高一数学函数图像知识点

2021-06-15 04:53:50
最佳回复

高一数学函数图像知识点

1.对数函数 一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,其中a叫做对数的底数,N叫做真数. 真数式子没根号

一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对

一次函数一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数.特别地,当b=0时,y是x的正比例函数. 即:y=kx (k为常数,k≠0)二、一次

基础 第一讲 函数 1.1 集合 1.2 函数 高考热点题型评析与探索 深化 第二讲 函数的性质 2.1 函数的单调性 2.2 函数的奇偶性 2.3 反函数 高考热点题型评析与探索 联系 第三讲 基本初等函数 3.1 回顾正比例函数、反比例函数、一次函数、二次 3.2 幂函数 3.3 指数函数 3.4 对数函数 高考热点题型评析与探索 本讲测试题 综合应用 函数的应用 一、函数的理论应用 二、函数的实际应用 三、综合应用训练题

§1.2.1、函数的概念 1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到

〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念 ①设 、 是两个非空的数集,如果按照某种对应法则 ,对于集合 中任何一个数 ,在集合 中都有唯一确定的数

函数的图象 (1)作图 利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换 ②伸缩变换 ③对称变换 (2)识图 对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.

必修一基本初等函数类型 包括 指数函数、对数函数、幂函数.性质:单调性、奇偶性、周期性另外,函数的概念、定义域、值域、复合函数、反函数、图象也要掌握.

函数的图象是高考的必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了,

1.幂函数 (1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形 2.指数函数和对数函数 (1)定义 指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别. 对数函数y=logax(a>0,且a≠1). 指数函数y=ax与对数函数y=logax互为反函数. (2)指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)的图象和性质如表1-2. (3)指数方程和对数方程 指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解.其基本类型和解法见表1-3.